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rameters of the model, I can then run counterfactual policy experiments where I
reduce capacities for some programs to see how applicants respond. I find that,
in general, applicant demand responds to changes in supply and that applicants to
other programs than the directly affected also change their application behavior.

Keywords: Economics of Education, Empirical IndustrialOrganization, School
Choice.
JEL classification: I21.

∗The University of the Faroe Islands, Department of Economics, Jónas Broncks gøta 25, 100 Tórshavn,
Faroe Islands. E-mail: trondurs@setur.fo. This work was supported by the Novo Nordisk Foundation grant
number NNF16OC0021056. This paper has benefited greatly from comments from Fane Groes, Bertel
Schjerning, Hans Henrik Sievertsen and seminar participants at Copenhagen Business School, The Danish
Graduate Programme in Economics (DGPE) yearly workshop, and the 2ndMeeting onQuantitative Education
Research in Denmark.

1



1 Introduction
Worldwide, Centralized admission systems are widely used to assign students to schools
and higher education programs1. Studies show that the allocation mechanism used by
the Centralized Admission Systems (here on CAS) affects the welfare and other aspects
of the allocations (Balinski and Sönmez, 1999; Abdulkadiroglu and Sönmez, 2003).
Much of this literature looks at how applicant demand responds to changes to the

admission systems. In particular, many studies compare the applicant welfare under
a manipulable allocation mechanism where applicants have a clear incentive to be
strategic in their applications to a counterfactual strategy-proof mechanism, e.g., a
Deferred Acceptance (here on DA) type algorithm similar to the one proposed by Gale
and Shapley (1962). There are, however, few studies on how student demand responds
to changes in supply. The answer is trivial when the mechanism is strategy-proof and
applicants report their preferences truthfully. In that case, any changes in supply will
only affect demand through changes in the characteristics of applicants and programs.
Recent studies show that in many of the real world implementations of the deferred
acceptance mechanism, with for example caps on the length of applications that can
be submitted, the strategy-proofness result breaks down even though the mechanism
itself is non-manipulative (Haeringer and Klijn, 2009; Hassidim et al., 2016; Fack et al.,
2019; Artemov et al., 2020). It is not a priori clear how demand will respond to changes
to supply when applicants do not report their preferences truthfully.
In this paper, I study how the demand for higher education responds to changes

in supply, through changes in program capacities, in an admission system that uses
a DA type algorithm where strategy-proofness fails. Further, I estimate applicant
preferences for higher education programs. I base the estimation on Danish higher
education application data combined with detailed administrative register data. The
Danish CAS uses a DA type matching mechanism, similar to the one proposed by Gale
and Shapley (1962) with some modifications. Most importantly, applicants cannot
include more than eight programs in their applications and because of this constraint it
is not necessarily optimal for applicants to report their preferences truthfully (Haeringer
and Klijn, 2009; Hassidim et al., 2016; Fack et al., 2019; Artemov et al., 2020). In
practice it means that applicants can choose to skip the impossible or leave out not good
enough programs, such that the observed applications are a subset of the applicants
true preferences. I report suggestive evidence showing that applicants to a large extent
include programs which have GPA cutoffs close to their high school GPA and that they
are reporting fewer programs than the limit of eight programs. If applicants reported
their preferences truthfully I would expect them to include more programs and also
to include programs with higher cutoffs as this should not affect their likelihood of
receiving an offer from the other reported programs. The canonical model for applicant
preferences assumes that applicants report their preferences truthfully, and estimates of

1I refer to major and university combinations as programs, e.g., economics at the University of Copen-
hagen.
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preferences are therefore biased if this assumption fails. To avoid the mentioned bias
and to be able to simulate counterfactual policy experiments where I change the supply
through program capacities, I need to take the strategizing behavior of applicants into
account.
To do this, I set up a portfolio choice model based on the framework in Chade

and Smith (2006). The model allows me to relax the assumption of truth-telling
by considering applicants’ beliefs about assignment probabilities. This allows me to
rationalize the observed application behaviour. I apply the bootstrap estimator suggested
by Agarwal and Somaini (2018) combined with an assumption on rational beliefs on
admission chances to estimate beliefs. I then combine these with detailed individual
application data containing all applications in Denmark for 2014 and high-quality
administrative register data to estimate applicant beliefs and preferences.
I further include a belief updating channel in my model. This in combination

with assuming that preference parameters are policy invariant allows me to perform
policy experiments to evaluate how applicant demand responds to changes in program
capacities through applicants beliefs. In practice I use the portfolio choice model to
solve for the optimal applications given a set of estimated parameters and re-estimating
beliefs under a set of counterfactual capacities. I repeat these steps until beliefs have
converged, and by comparing the simulated applications using the baseline beliefs with
the simulated applications using the updated beliefs I can see how the model predicts
demand will respond to a change in capacities. I compare the search patterns of students
under the different policy experiments, and as I know the assignment mechanism, the
final allocations of students for different capacities. In further also compare the final
allocations in the policy experiments with a scenario where applicants do not have
information on the changes to the capacities, and therefore are not able to update their
beliefs. The changes in capacities that I consider are "neutral", as I redistribute any
reductions in capacities for affected programs to unaffected programs according to the
size of their prior capacities. The reason is that I only model the intensive margin of
the application behavior (e.g., the decision for which program(s) to apply). As I do not
model the extensive margin (e.g., whether to apply or not), the model is not well suited
to measure the impact of an overall change in capacities.
I find that reducing capacities for programs in humanities while increasing capac-

ities for other programs correspondingly causes applicants to change their application
behavior, if they can update their beliefs. I see changes in application behavior even if I
condition on whether applicants applied to programs before the change, who either have
decreased or increased capacities now. However, applicants with an application to pro-
grams in humanities, before the change, shift away from humanities to a higher degree
than other applicants shift away from their original field. Further, the characteristics
of the programs that applicants with an application to programs in humanities, before
the change, shift to are more similar to the programs of other applicants on average.
Importantly I also find that revealing capacities and changes to capacities to applicants
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before they submit their applications might help applicants who otherwise end up being
rejected.
This paper’s contributions are multiple and relate to several different strands of the

literature. Firstly, I contribute to the large and growing body of work on estimated pref-
erences for higher education. Internationally many papers have estimated preferences
for higher education, see for example Patnaik et al. (2021) for a recent survey of the
literature. Particularly the contribution of this paper is estimating preferences based
on rich measures of program characteristics generated from register data while relax-
ing the strong assumption of truthfulness by allowing applicants to be strategic in my
model. Another way of relaxing the assumption of truthfulness is to use the estimator
proposed by Fack et al. (2019). I do not use this approach as I need to fully model the
application behaviour to be able perform the policy experiments. The body of work on
estimating preferences for higher education is closely related to the literature studying
school choice. The two problems are similar in many aspects although they differ in
some important ways. Firstly schools mainly differ in the quality of the teaching and
the distance to the students home, while university programs include a third dimension
in the content which is taught (e.g. business or medicine). For university programs the
third dimension is most likely the most important. Further, for university programs it
is the student who makes the decision for which programs to apply for, while it is the
parents of the student who make the decision in school choice. The seminal paper by
Abdulkadiroglu and Sönmez (2003) framed the school choice problem as a mechanism
design problem. They analyzed some of the existing allocation mechanisms and offer
two alternative mechanisms which provide solutions to some existing problems. The
paper inspired a large body of work to better understand the school choice problem
and the effects of the allocation mechanisms. Agarwal and Somaini (2020) survey
the recent methods to estimate preferences for schools and gives an overview of the
empirical results.
Another branch of the literature on school choice is concerned with estimating

preferences for schools or higher education programs when applicants do not report
their preferences truthfully. Recently several papers have looked into this problem by
looking at subjective beliefs on admission chances and information. Agarwal and So-
maini (2020) study a model of school choice where applicants have beliefs of admission
chances. In their main specification they assume that applicants have rational expec-
tations when forming their beliefs. This approach assumes that applicants have full
information when forming their beliefs. I use the same approach to estimate beliefs in
my paper. Kapor et al. (2020) elicit beliefs through a survey and find that the beliefs are
not in line with an assumption of rational expectations. They relax the assumption of ra-
tional expectations by allowing applicants to make mistakes when forming their beliefs.
My current model does not allow me to consider mistakes in the formation of beliefs.2

2If applicants make mistakes when forming their beliefs it can bias my preference estimates, although it
is difficult to say without having elicited beliefs.
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Chen and He (2021, 2022) show that information costs can affect which preferences
applicants report as they might not have enough information on all schools/programs
and acquiring information can be costly. I do not properly model information costs in
my model, but include a fixed information cost from including additional programs in
the application. The reason is that it is difficult to separate the effect of beliefs and
information costs on reported preferences.
Secondly, I contribute to the body of work which structurally models applicants’

behavior in the school choice problem. Some other papers who model the applicants
decision based on the portfolio choice model by Chade and Smith (2006) are Larroucau
and Rios (2020), Larroucau and Rios (2022), Ekbatani (2022), and Ajayi and Sidibe
(2015). Larroucau and Rios (2020), Larroucau and Rios (2022), and Ekbatani (2022)
also model applications to higher education programs in Chile and Iran, while Ajayi
and Sidibe (2015) set up at portfolio choice model to study school choice in Ghana.
Calsamiglia et al. (2017) set up a structural model which they solve by backward
induction for school choice in Barcelona.
Thirdly, I contribute to the small body of work on the effects of changes to the

supply of higher education programs, through changes to capacities. My contribution
is developing a model framework that allows the researcher to understand how the
demand for higher education programs responds to intensive margin changes to the
supply through changing capacities in a centralized application system using a deferred
acceptance type or similar matching mechanisms. Another paper which studies this is
Gandil (2022), who estimates the effect of supply changes on potential earnings, while
holding preferences fixed. Gandil (2022) finds that changing supply with 10 slots leads
to 15 applicants moving and that it explains 40 percent of the variation in earnings.
This body of work is also related to the recent papers on field of study and earnings.
Kirkeboen et al. (2016) exploit the implied randomness which arises close the the GPA
cutoffs in university allocation mechanism which use a DA type mechanism, to identify
the causal effect of crossing the threshold on earnings. Daly et al. (2022) build on this
by looking at the effect of having first and second ranked programs in the same broad
field versus having these in different broad fields. They find that only students with the
first and second ranked programs in different broad fields, are negatively affected by
not being accepted in their first ranked program.
The closest papers to this paper are Gandil (2022) and Larroucau and Rios (2020).

While Gandil (2022) studies substitution effects that arise due to changes in program
capacities for the Danish higher education market, as I do, my paper differs in some
important ways. Firstly, he assumes that applicants report their preferences truthfully
and that they are not affected by supply, such as e.g. Abdulkadiroglu and Sönmez (2003)
and Azevedo and Leshno (2016). I relax the assumption on applicants reporting their
preferences truthfully by explicitly modelling the applicants’ behavior. His approach
allows him to look at the substitution effects from changes to capacities for the whole
application market, while I am currently limited to looking at a subsample of the pool
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of applicants as I do not estimate the preferences for the full population of applicants.
Secondly, his focus is on showing the effect on foregone expected earnings caused
by changes to supply, while my focus is on understanding how applicant demand
responds to changes in supply. My scenario, where I do not allow applicants to update
their beliefs, is equivalent to his approach. If I had estimated preferences for the full
population, my approach could therefore be seen as containing his approach as a special
case. Larroucau and Rios (2020) also develop a Portfolio Choice model to estimate
applicant preferences for higher education programs. They do this for the Chilean higher
education market and compare the estimates from their model to estimates obtained
from a model which assumes strict truth-telling and find that these are biased. I use the
same approach as they do to model the applicants’ preferences. However, my approach
differs as I adapt the model by adding a framework that allows applicants to update
their beliefs in response to changes in supply. The mechanism I have implemented for
updating applicant beliefs is similar to the mechanism in Larroucau and Rios (2022)
but differs in its focus. They use it to update applicants’ beliefs about their abilities in a
dynamic setting, whereas I use it to update applicants’ beliefs after changing capacities.
The remainder of the paper is organized as follows. Section 2 describes the In-

stitutional settings and, in particular, the application system in Denmark. Section 3
describes the different data sources I use. Section 4 describes the application behavior
and the characteristics of the programs in the observed applications. In section 5, I
set up the Portfolio Choice model. Section 6 lays out the identification strategy. In
section 7, I describe the approaches used to estimate beliefs and preference parameters.
Section 8 presents and discusses the results and policy experiments. Finally, section 10
concludes with policy recommendations and suggestions for future research.

2 Institutional settings
In this section, I describe Denmark’s higher education system, the centralized admission
system, and the mechanism used to assign applicants to higher education programs.

2.1 Higher Education System
The higher education system inDenmark covers all educations post high-school degrees,
e.g., education degrees offered by universities and business academies.
All higher education in Denmark is free, and students receive a stipend while

enrolled.3 Further, students in higher education in Denmark are also eligible for cheap
student loans, where they are allowed to uptake a new loan corresponding to the yearly

3Students can receive it up to the normalized study time, e.g., five years for economics and six years for
medicine, plus one additional year. The stipend comes with some conditions, e.g., how many ECTS points
students have to be enrolled in yearly, although these conditions have changed over the years. In 2014 the
stipend amount was 5, 839 DKK before taxes.
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stipend each year with a very favorable repayment scheme. Students also receive a
higher tax deduction.
Contrary to the higher education system in, e.g., the US, theDanish higher education

system requires students to choose a major when applying, and most courses, except
for some possible electives, will be within the subject of the chosen major. However,
most programs also allow students to take courses offered by other programs, although
there are often strict program-specific rules in place for the contents of these courses.
Further, most students who graduate with a bachelor’s degree also take a master’s
degree, according to a report by DST (2016) 83% of students who graduated with a
bachelors degree in 2016 chose to enroll in a master’s degree program in the same year.

2.2 Application system and mechanism
The CAS inDenmark handles virtually all applications for higher education. Applicants
submit a Rank Ordered List (here on ROL) with their preferred programs to the CAS,
which uses a student proposing DA type mechanism to match applicants and programs.
By DA type mechanism, I mean that the mechanism is similar to the one proposed by
Gale and Shapley (1962), with some important modifications. The first is an upper
limit on how many programs each applicant can include in her application, and it is
very common in real-world implementations of the DA mechanism. For example, in
Denmark, the limit for the length of applications is set at 8 programs. In other countries,
it typically does not vary much from this number with some outlier countries, e.g., it is
10 in Norway (Kirkebøen, 2012), 10 in Chile (Larroucau and Rios, 2020), while it is
much higher in Iran, 100, (Ekbatani, 2022).
A second modification is splitting the program capacities into multiple quotas. In

2014, for example, the number of quotas was 70. The most used quotas are quota 1,
quota 2, and quota 1 and 2 standby.4 The applicants who apply for a given program
through quota 1 are evaluated by their high school GPA and possibly some program-
specific requirements, for example, a requirement to have passed a certain level of some
set course in high school or a grade above some threshold in a certain course in high
school or a program specific minimumGPA threshold. Quota 1 constitutes the majority
of all applications as well as capacities (offers). Applicants who apply through quota 2
are evaluated on other measures than their high school GPA, e.g., grades or levels from
specific courses in high school, motivational letters, relevant past work experience, and
so forth, which differ across programs. It is, however, also important to note that all
applicants who apply through quota 2 are first tested using the quota 1 criteria before
being tested on the quota 2 criteria, if applicable (the student has a high school degree
and the program’s admission is not solely through quota 2). Lastly, applicants can
also cross off the standby (either quota 1 or quota 2) option in combination with either

4The other quotas are, e.g., international students from non-Scandinavian countries and applicants from
Greenland, among others. These make up an insignificant number of applicants and capacities, and I ignore
them to simplify the analysis.
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quota 1 or quota 2. Programs where the applicant has marked standby, are evaluated
on the same requirements as pure quota 1 or 2. If an applicant is rejected on either
of these "main" quotas for a given program the applicant is evaluated on the standby
requirements for the standby capacity for the given program. If the applicant is offered
a standby seat in a program, she is offered admission if enough applicants reject their
offer. If not, she is guaranteed admission to this program next year. Being accepted in
standby, however, also means that the applicant is not evaluated for any programs she
listed as a lower priority in her application.
Most programs have quota 2 capacities ranging up to 10% of their total capacities.

Further, the number of seats allocated to standby on quota 1 and 2 is also small compared
to the total capacities.
Deadlines for applications differ by type of quota. For example, the deadline for

submitting through quota 2 is on the 15th of March, and the deadline for submitting
through quota 1 is on the 5th of July.
After all offers are given, applicants choose to accept or reject the offer. After

that, the aftermarket begins. Applicants who were accepted through the standby quota
are offered seats in the given program if rejected offers have freed up any. After that,
applicants who were either not given an offer or rejected their offer and new applicants
can apply for all programswith free capacities. The applications through the aftermarket
go directly to the different programs. I ignore the aftermarket in this paper.

3 Data
In this section, I outline the different data sources used, detail how I generate the
program-specific characteristics, and state the selection criteria used to define the sam-
ples used in the analysis.

3.1 Application data, capacities, and specific requirements
The primary data source is detailed information on submitted higher education appli-
cations in Denmark. I have access to all submitted applications to the Centralized
Admissions System in Denmark for 1993-2015. This data contains demographic and
educational background information on all applicants (GPA used for application, age,
sex, citizenship, high school, type of high school, and other relevant information) along
with information on which programs and, importantly, in what specific order each appli-
cant has included these programs in her application and which program she received an
offer from if any. The GPA measure in the application data includes GPA multipliers.5
The application data also contains detailed information for each ranked program on

5Applicants in Denmark can multiply their GPA up before they apply by some multipliers based on, e.g.,
the number of A level courses in high school and if the applicant graduated from high school no more than
two years prior to the application.
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through which quota the application is. The raw dataset contains 3,385,555 applicants
× program observations. I restrict the data to applications made in 2014, which leaves
me with 244,198 applicants × program observations before I make any selection. There
are three distinct reasons for only using applications in 2014. Firstly, I want data that is
recent to be able to inform current policy. Secondly, I chose 2014 as I need a lot of data
on graduated students to generate some program-specific characteristics, and it should
ideally be data on students from earlier cohorts. Lastly, I chose 2014 as it is the last
year before the Vacancy Based Dimensioning reform was implemented in 2015, and
this allows me to relate the policy experiments to the reform.
The application data does not contain information on the capacities of programs in

a given year. The information on program capacities is only publicly available for full
programs. I was generously allowed access to this information from the Ministry of
Higher Education and Science. The program capacities data contains information, for
each program and year, on the capacities by to the different enrolment channels and the
number of filled seats. Some programs have unrealistically high capacities, e.g., 999,
and these should be interpreted as being higher than the number of filled seats, although
the exact number is unknown. As I need these for my belief estimation and policy
experiments, I need a more realistic measure of the capacity for these programs. My
solution is to use the highest observed capacity for a given program across all available
years. I will refine the solution to this problem in a future version of the paper.
Finally, I get information on program-specific requirements from the historic exec-

utive orders concerning admission requirements to the higher education programs in
Denmark.6 The program-specific requirements are admission requirements that are ad-
ditional to the regular admission requirements and vary by program, and I have collected
them specifically for this project. In particular, the program-specific requirements data
contains requirements such as minimum GPA, minimum requirements for grades in
certain high school courses, and minimum requirements for the level of certain high
school courses.
Based on the application data, I create one of the program-specific characteristics

I use to estimate applicants’ preferences. The measure is the difference between an
applicant’s GPA in 2014 and the average GPA of accepted applicants in a given program
in 2013, scaled by the standard deviation of the GPA of accepted applicants in the same
program in 2013. I calculate the measure as

𝐺𝑖 𝑗 =
𝐺𝑃𝐴𝑖,2014 − 𝐺𝑃𝐴 𝑗 ,2013

𝜎𝐺𝑃𝐴 𝑗2013

where 𝐺𝑃𝐴𝑖 is applicant GPA, 𝐺𝑃𝐴 𝑗 ,2013 is the average GPA of accepted applicants
for program 𝑗 in 2013, 𝜎𝐺𝑃𝐴 𝑗2013 is the standard deviation of the GPA of accepted
applicants for program 𝑗 in 2013, and 𝐺𝑖 𝑗 is the standardized GPA of applicant 𝑖.

6The historic and current executive orders can be found on www.retsinformation.dk.
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3.2 Administrative Register Data and distance measure
I mainly rely on administrative register data to generate the program-specific character-
istics. However, to link the program characteristics, generated based on the registry data,
with the application data, I first need to generate links between the program identifier
in the application data and the program identifier in the education registry. To generate
the links, I rely on the student registry (KOTRE), which contains all educational spells.
I outline some issues related to forming the links and the approach I use to overcome
these in appendix A.
After I have generated the links between the program identifiers in the application

data to the program identifiers in the registries, I can generate three additional pro-
gram characteristics for the expected labor market conditions after the applicants have
graduated to help me estimate applicants’ preferences.
To generate my three measures of labor market conditions, expected unemployment,

expected earnings, and dispersion of expected earnings, I first combine the spell data
from the student registry (KOTRE) with the link between program identifiers in the
application data and the student registry, to identify all students who enrolled in a
relevant bachelors degree in 2002 or later. I then condition on graduating with a
bachelor’s degree and enrolling and graduating with a subsequent master’s degree.
I keep the graduation date, month, and year, along with the program link and the
personal identifier for students who graduated with their master’s degree between 2008-
2016. I then combine this data with the monthly employer-employee registry (BFL)
for 2008-2016 to generate the measures for expected labor market conditions. To get
a measure of expected unemployment, I first calculate the number of days between the
date of graduation and the first day in the employer-employee registry, where I record a
student as being employed in a position equivalent to 75% of full-time. I then estimate
expected unemployment, 𝑈, as the average number of days between graduation and
the first recorded day of employment divided by 30 to get months. I rely on a similar
approach to get my measures of expected earnings and the dispersion of expected
earnings. Instead of using the graduation date, I use the month. I then deflate the
monthly earnings during the 12 months after graduation and divide by 10.000. Then
I estimate the mean monthly earnings to use as my measure of expected earnings, 𝑤.
Finally, I estimate the dispersion of the expected earnings, 𝜎𝑤 as the standard deviation
of the monthly earnings.
The distance measure, 𝐷, is created for this project by Denmark Statistics. It

measures the road distance from the addresses of all high schools in Denmark to the
main campus of all universities, such that the measure varies both by program and
individual.
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3.3 Sample selection
The full dataset contains information on 91, 276 applicants who apply to 897 different
programs. After initial cleaning of the data, whichmostly consists of removing canceled
applications and applicants with multiple accepts, missing personal identifiers, and so
on, results in a removal of 14, 741 applicants, leaving me with 80, 112 applicants,
which I refer to as the universe of applicants. I use this sample to describe the overall
characteristics of all applicants.
I select two samples from this universe of applicants to use in my estimation. I refer

to them as the full sample and the analysis sample, which is a subset of the full sample.
I use the full sample every time I run the allocation algorithm, which is a part of the
estimation of subjective beliefs and the policy experiments. I use the analysis sample
to estimate preferences and to summarize the results for the policy experiments.
To get the full sample, I remove all applicants with a missing high school GPA

and applications to programs with zero capacities. This selection reduces the sample to
65, 214 applicants who apply to 693 different programs. Asmentioned, I use this sample
to estimate beliefs. The applicants with missing high school GPAs and applications to
programs with zero capacities strictly apply through the quota 2 channel. As they are
not tried on the quota 1 criteria, removing them does not affect the belief estimation.
To get the analysis sample, I select only applicants with applications strictly through

the quota 1 channel, consisting only of university bachelor degrees. Further, I restrict
the sample to applicants with an observable high school degree from a Danish high
school. Lastly, I restrict the sample to applicants who only include programs with
an observable value for all program and program/applicant characteristics used in the
estimation (𝐷, 𝐺, 𝑈, 𝑤, and 𝜎𝑤). This results in a sample of 12, 964 applicants
with 24, 025 applications applying to 234 different programs. The two first selection
requirements (quota 1 and bachelor) are highly correlated and the most important in
terms of the reduction in sample size both by themselves and together.

4 Descriptives
In this section, I describe the overall characteristics of the applicants in the three
different samples, the characteristics of the programs I observe in the applications, and
the observed application behavior.

4.1 Applicant characteristics
Table 1 shows overall sample characteristics for three different samples. The table
contains three panels, one for each sample. The first column showsmean characteristics,
the second column shows standard deviations, and the third column shows the sample
percentage with a non-missing value for the variable. By comparing panel C, the
analysis sample, with the other two panels, we see that the applicants in the analysis
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Table 1: Summary statistics by sample

Panel A: Universe of applicants Mean Std Share in sample

GPA 7.21 2.53 85.10%
Female 0.53 0.50 100%
Age 22.54 5.62 91.58%
No. priorities 2.40 1.71 100%
Accepted 0.80 0.40 100%
Accepted priority 1.27 0.77 80.33%
Contains university program 0.52 0.50 100%
Only university programs 0.41 0.49 100%
Only through Quota 1 0.45 0.50 100%
Contains Quota 2 0.48 0.50 100%
Observations 80,112

Panel B: Full sample Mean Std Share in sample

GPA 7.29 2.52 100%
Female 0.55 0.50 100%
Age 21.84 4.85 93.57%
No. priorities 2.50 1.73 100%
Accepted 0.78 0.41 100%
Accepted priority 1.31 0.82 78.08%
Contains university program 0.63 0.48 100%
Only university programs 0.51 0.50 100%
Only through Quota 1 0.57 0.50 100%
Contains Quota 2 0.43 0.50 100%
Observations 65,214

Panel C: Analysis sample Mean Std Share in sample

GPA 9.10 2.26 100%
Female 0.51 0.50 100%
Age 20.21 2.48 98.43%
No. priorities 1.85 1.21 100%
Accepted 0.87 0.33 100%
Accepted priority 1.11 0.45 87.26%
Contains university program 1.00 0.00 100%
Only university programs 1.00 0.00 100%
Only through Quota 1 1.00 0.00 100%
Contains Quota 2 0.00 0.00 100%
Observations 12,964

Note: The table contains three panels, panel A is for the universe of applicants,
panel B is for the full sample, and panel C is for the analysis sample. The first
column contains means for the selected variables, the second contains standard
deviations, and the third contains the share of the given sample with non-missing
values for the variable in percentages.12



sample, on average, have a higher GPA, are younger, submit applications with fewer
programs, are more likely to be accepted to any program, and are accepted on a higher
ranked program in their application conditional on being accepted. Further, we also
see that the analysis sample only contains applicants whose applications consist of
university programs and only apply through the quota 1 channel, as I condition on these
in the sample selection. Programs evaluate applicants through the Quota 2 channel
based on measures other than high school GPA, e.g., grades or levels from specific
courses in high school, motivational letters, and relevant past work experience, and I,
therefore, expect them to have a lower GPA and be older on average.

4.2 Program characteristics

Table 2: Characteristics of programs in applications by rank

Rank 1 Rank 2 Rank 3
Mean (Std) Mean (Std) Mean (Std)

Distance (10 Km) 7.15 8.45 8.98
(7.80) (8.16) (8.55)

Standardized GPA -0.19 -0.17 -0.19
(1.68) (1.72) (1.71)

Unemployment (Months) 4.55 4.46 4.55
(2.70) (2.66) (2.77)

Expected earnings (10,000 DKK) 2.50 2.52 2.52
(0.58) (0.59) (0.59)

Dispersion of Expected earnings 1.14 1.18 1.16
(0.44) (0.57) (0.52)

Observations 12,964 5,965 2,956

Note: The reported numbers are means (standard deviations in parentheses). The first
column reports variable names and units in parenthesis. The columns indicate for which
rank in the applications the measures are. The number of observations shows the number
of applicants with at least the given number of ranks in their application.

Tables 2 and 3 show the characteristics of the programs in the observed applications
for ranks one to three. Since the number of students with longer applications is low,
I only rely on the three first ranks to generate moments for the estimation. Table 2
shows the mean and standard deviation by rank 1 to 3 of the observed applications
for the different program characteristics. Higher ranked programs are, on average, a
shorter distance to applicants’ high school, while all the other characteristics are evenly
distributed across the top three ranks on average. Appendix table 13 shows mean
characteristics for ranks four to eight. The pattern in the distance continues to the lower
ranked programs. At the same time, programs ranked lower in the application than
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rank 3 have higher expected unemployment, lead to lower expected earnings, a lower
dispersion in expected earnings, and also have students in the prior application year
with lower GPAs.

Table 3: The distribution of programs in different fields and universities by
rank

Field Rank 1 Rank 2 Rank 3

Social science 0.12 0.13 0.14
Humanities 0.20 0.21 0.21
Health 0.05 0.03 0.03
Natural science 0.21 0.22 0.22
Engineering 0.06 0.04 0.04
Other Business 0.08 0.10 0.09
Education 0.01 0.01 0.01
Economics 0.03 0.03 0.03
Medicine 0.08 0.08 0.09
Law 0.08 0.07 0.08
Political science 0.03 0.03 0.03
Business 0.06 0.05 0.05

University Rank 1 Rank 2 Rank 3

University of Copenhagen (KU) 0.37 0.33 0.36
Aarhus University (AU) 0.20 0.21 0.21
Copenhagen Business School (CBS) 0.08 0.11 0.11
Aalborg University (AAU) 0.12 0.09 0.08
University of Southern Denmark (SDU) 0.13 0.15 0.13
Roskilde University (RUC) 0.05 0.06 0.05
Technical University of Denmark (DTU) 0.05 0.05 0.05
IT University of Copenhagen (ITU) 0.01 0.01 0.01

Observations 12,964 5,965 2,956

Note: The table shows the share of applicants who have ranked a program in a
given field (top panel) or university (bottom panel) for the first three ranks in their
applications. The number of observations shows the number of applicants with at
least the given number of ranks in their application.

Table 3 shows the share of applicants who applied for a program in a given field7
on the upper panel and a given university on the lower panel by ranks 1 to 3. Most
applicants apply to a program in humanities as their top rank, with programs in social
sciences (including economics and political science) in a close second place, followed

7Tabel 12 gives examples of which programs belong to the fields in table 3
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by business (including other business and law). The patterns look similar for ranks 2 and
3 when conditioning on having at least two or three programs in the application. The
pattern for universities is also quite similar across the top 3 ranks. Most applicants, 37%,
have a program at the University of Copenhagen as their top rank, and the second most
popular university is Aarhus University, with 20% of applicants choosing a program
there as their top rank.

4.3 Application behaviour

Figure 1: Application patterns for the full sample and the analysis sample

Note: The upper plot shows the share of applicants with a given ROL length, with percent on the second axis
and ROL length on the first axis. The lower plot shows the distribution of accepted rank, if any.

Figure 1 shows applicants’ overall application patterns in the full sample and the
analysis sample. The upper panel shows the distribution of the length of the applications.
Most applicants submit a short application with only one program, 54% of the analysis
sample. The overall pattern is that as the length of applications increases, the share of
applicants who have submitted an application of the given length falls. This pattern is
clearer for the analysis sample compared to the full sample, with almost none of the
applicants in the analysis sample submitting applications with five or more programs.
The lower panel shows the unconditional distribution for on which rank applicants are
accepted. We see that most applicants are accepted on their top ranked program and
that this is more pronounced for the analysis sample (80.4%) compared to the full
sample (63.9%). Further, we see that 12.7% of the analysis sample are rejected from
all programs in their application, while this is 21.9% for the full sample. Further, we
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see that the share of applicants accepted on a given rank is falling with the number of
ranks in the applications. The general pattern of short listing combined with the fact
that low GPA applicants apply to programs with lower cutoffs the year before is in my
interpretation a clear indication of strategic behaviour, where applicants with low GPAs
top censor their applications, while applicants with high GPAs only include their most
desired programs.

Figure 2: Application patterns for the full sample and the analysis sample by GPA

Note: The upper plot shows the distribution of the length of applications by GPA groups. The number of
ranks in the applications is on the first axis, and shares in percentages are on the second axis. The lower plot
shows the distribution for which rank an applicant is accepted on or if the applicant is rejected by GPA groups.
For both plots, applicants are grouped by GPA accordingly 2 to 4, not including 4, 4 to 7, not including 7, 7
to 10, not including 10, and 10 or above.

Figure 2 shows the distribution of length of application in the top panel and which
rank the applicant was accepted on, if any, on the bottom panel by GPA for the analysis
sample. In the top panel, we see that applicants are almost equally likely to submit an
application of a given length across the GPA distribution. If we turn to the bottom panel
of figure 2 we see that applicants are also almost as likely to be accepted on a given
priority across the GPA distribution. I interpret this finding as evidence of applicants
not reporting their preferences truthfully. Almost no applicants reach the maximum
length of their applications, so including one or more programs with historically higher
GPA cutoffs on a higher rank would not affect their probability of being accepted in
their current ranked programs.
Figure 3 shows the variation in cutoffs from 2013 to 2014. The first thing to notice

is the two lines that the points sketch out. It is only feasible for points to be located
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Figure 3: Change in cutoffs from 2013 to 2014

Note: The figure shows the change in cutoffs from 2013 to 2014. The first axis shows the cutoff in 2014,
and the second axis shows the difference from 2013 to 2014. The number of programs scales the size of the
points at a given point. The color of the points indicates whether a given program is only part of the full
sample (grey) or part of the analysis sample as well (black).

on the lines or below the diagonal line and on the right of the vertical line. Programs
on the bottom vertical line have the lowest possible cutoff in 2014, a GPA of 2, which
means that the change from 2013 to 2014 can only be negative or zeros. Points on the
top diagonal line had the lowest possible cutoff in 2013, a GPA of 2, so the resulting
change will be equal to the cutoff in 2014 minus 2. The main takeaways from the
figure are that there is much variation in yearly cutoffs and that many programs have
non-binding cutoffs (although most are non-university programs). So applicants cannot
predict the cutoffs perfectly. Remember, capacities and capacity changes are not public,
and further students might not be able to predict how many other applicants there are
or what their GPAs are.

5 Model
In this section, I formalize the applicants’ education choice problem. In essence, the
problem for the applicants is to optimally choose to submit a ROL that maximizes their
expected utility. I base the framework on the optimal portfolio choice model in Chade
and Smith (2006).
There are 𝑖 = 1, ..., 𝑁 applicants choosing up to �̄� out of 𝐽 programs to include

in their ROL, which they submit to the CAS. I denote the set holding all possible
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ROLs, e.g., all combinations of programs for any given length of ROL up to �̄�, R, and
individual 𝑖’s chosen ROL from all of the possible ROLs as 𝑅𝑖 . The length of 𝑅𝑖 , |𝑅𝑖 |,
gives the number of ranked programs in 𝑅𝑖 . All programs have positive capacities,
𝑞 𝑗 > 0∀ 𝑗 . Further, all programs have identical and known preferences over applicants’
scores.
All applicants have preferences over all 𝑗 programs, sorted according to their indirect

utilities 𝑢𝑖 𝑗 , and all applicants have subjective beliefs about their admission chance to
all 𝑗 programs expressed by the vector given by 𝑝𝑖 𝑗 ∈ [0, 1]. I further assume beliefs
are independent across programs.
I can then formalize applicant 𝑖’s expected utility from submitting a given ROL 𝑅𝑖

as

E𝑈 (𝑅𝑖) =
|𝑅𝑖 |∑︁
𝑘=1

( 𝑟𝑘−1∏
𝑟=1

(1 − 𝑝𝑖𝑟 )𝑝𝑖𝑟𝑘𝑢𝑖𝑟𝑘
)
+

|𝑅𝑖 |∏
𝑘=1

(1 − 𝑝𝑖𝑘)𝑢𝑖0, (1)

where 𝑢𝑖 𝑗 is the indirect utility from being accepted to program 𝑗 , 𝑝𝑖𝑟 is the indi-
vidual and program-specific belief about the chance of being accepted to the program
ranked as 𝑟 . The 𝑘 term in 𝑟𝑘 describes the program’s rank in the applicant’s ROL. The
last term is the value of the outside option. Applicants not accepted to any programs
included in their ROL receive the value of the outside option, which I set to 0. Further,
I require all applicants to list at least one program in their ROL, so my model does not
capture the extensive margin fo the application behavior, e.g., whether to apply at all or
not. The expected utility reflects the characteristics of the DA assignment mechanism
in place, considering that an applicant will only be tried for admission at program 𝑗 if
she is rejected from all programs she ranked higher in her application.
The applicants’ problem is then to maximize the following expression

max
𝑅𝑖 ∈R

E𝑈 (𝑅𝑖) − 𝑐( |𝑅𝑖 |), (2)

where E𝑈 (𝑅𝑖) is the expected utility from submitting ROL 𝑅𝑖 and 𝑐( |𝑅𝑖 |) is the
application cost function, which depends on the length of the submitted ROL. As
there are no pecuniary application costs, the cost function contains only non-pecuniary
application costs, such as the information cost associated with finding programs to
include in the application. I assume the cost function is linear 𝑐( |𝑅𝑖 |) = |𝑅𝑖 | · 𝑐, where
𝑐 is a small and fixed application cost. Further, I let the application cost function go
to infinity for |𝑅𝑖 | > 8 as applicants cannot submit more than 8 programs in their
applications. Finally, I calibrate the fixed cost 𝑐 to 1𝑒 − 6 to ensure that applicants
only include programs in their application that strictly improve the expected utility.
Otherwise, it is always optimal for applicants to include programs with a subjective
probability of 0 in their applications as long as they have ranked fewer than eight
programs.
Applicants then sequentially add programs, which increase the expected utility from

submitting a given ROL, taking into account the cost of submitting the ROL. Applicants
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can either include programs in the top, the middle, or the bottom of their ROL, and
Haeringer and Klijn (2009) show that it is optimal for applicants to sort the programs
in their chosen ROL by expost utilities.

5.1 Indirect utility
The indirect utility applicant 𝑖 receives from being accepted to program 𝑗 is given by

𝑢𝑖 𝑗 = 𝛼𝐹
𝑗 + 𝛼𝑈𝑗 + 𝑍𝑃

𝑗 𝛼 + 𝑍𝑆
𝑖 𝑗 𝛽 + 𝜀𝑖 𝑗 (3)

where 𝛼𝐹
𝑗
and 𝛼𝑈

𝑗
are field and university fixed effects, 𝑍𝑃

𝑗
is a matrix containing

program-specific characteristics given by

𝑧𝑃𝑗 = 𝑈 𝑗𝛼1 + 𝑤 𝑗𝛼2 + 𝜎𝑤
𝑗 𝛼3, (4)

where 𝑈 𝑗 is the expected unemployment, 𝑤 𝑗 is the expected earnings, and 𝜎𝑤
𝑗
is the

dispersion of expected earnings. Further, 𝑍𝑆
𝑖 𝑗
is a matrix containing characteristics that

vary across applicants and programs

𝑧𝑆𝑖 𝑗 = 𝑑𝑖 𝑗 𝛽1 + 𝐺𝑖 𝑗 𝛽2, (5)

where 𝑑𝑖 𝑗 is distance and𝐺𝑖 𝑗 is standardizedGPA. Lastly, 𝜀𝑖 𝑗 is an additive idiosyncratic
taste shock following a type I extreme value distribution.

5.2 Solving Portfolio Choice model
Solving the Portfolio Choice model requires finding the optimal portfolio from all
possible portfolios for a given applicant. As the number of programs is 𝐽 = 234 and
applicants can rank up to �̄� = 8 programs in their application, this leads to

(234
8
)
possible

combinations, which have to be evaluated for each applicant. Comparing all of them
is infeasible. Instead, I use the Marginal Improvement Algorithm (MIA) proposed by
Chade and Smith (2006) to find the optimal ROL for a given applicant. Chade and
Smith (2006) show that if beliefs are independent and the cost function only depends
on the length of the portfolio, it is only necessary to evaluate up to 234(234+1)

2 portfolios
and in most instances much fewer. The algorithm runs in the following steps

1 Start with 𝑅0
𝑖
= ∅

2 Choose 𝑗 = max 𝑗∈𝐽\𝑅𝑛−1
𝑖
E𝑈 (𝑅𝑛−1

𝑖
∪ 𝑗)

3 Set 𝑅𝑛
𝑖
= 𝑅𝑛−1

𝑖
∪ 𝑗 and order 𝑅𝑖 by 𝑢𝑖 𝑗

4 Stop if𝑈 (𝑅𝑛
𝑖
) −𝑈 (𝑅𝑛−1

𝑖
) < 𝑐( |𝑅𝑛

𝑖
|) − 𝑐( |𝑅𝑛−1

𝑖
|) = 0 or all remaining 𝑢𝑖 𝑗 < 𝑢𝑖0
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In other words, the algorithm takes a given ROL, 𝑅𝑖 , and calculates the expected
value from including the remaining non-chosen alternatives in 𝐽 one at a time. It
thereafter checks which alternatives improve the expected value of submitting the ROL
and chooses the one that gives the highest improvement in the expected value, if any.
In other words, as the name suggests, the algorithm looks for the highest marginal
improvement to the expected portfolio value, if any exists.

6 Identification
Identifying preferences for college programs is a challenging task. It is possible to
rationalize every possible ordering by only looking at applicants’ submitted ROLs, as
it is impossible to separate strong preferences on unobservables from, e.g., beliefs. To
identify applicants’ preferences and beliefs separately, I rely on including what Agarwal
and Somaini (2018) call a special regressor along with an assumption of rational
expectations. The purpose of the special regressor is to include an exogenous variable,
which only shifts preferences through indirect utility and not through beliefs. As
Agarwal and Somaini (2018) suggest I include an individual-level measure of distance
to education programswhich I assume is exogenously determined. The specific distance
measure I use is the road distance between applicant 𝑖s high school and the location
of program 𝑗 , so my distance measure only varies for programs across universities and
not within universities. This means that I also rely on the other measures in the indirect
utility function, which vary across programs within universities as well, to separately
identify preferences from beliefs.
Manski (2004) suggests that researchers circumvent the difficulties of separately

identifying preferences and beliefs by eliciting subjective beliefs with, e.g., a survey.
The approach suggested by Manski (2004) is not feasible in my case for two reasons.
Firstly I rely on data on observed preferences, which was already collected, so I cannot
go back and survey applicants. Secondly, my counterfactuals require me to be able to
model applicants’ belief formation. My approach is instead, to assume that applicants
have rational expectations when they form their beliefs and that the beliefs can be
estimated using the bootstrap estimator proposed in Agarwal and Somaini (2018).
To further help me identify the parameters of the indirect utility function, I use the

variation in program characteristics and individual-program program characteristics
in my data. I describe the different sample moments I am exploiting to identify the
different parameters in section 7.
Changes in capacities are not announced prior to applications, and students can only

infer changes to capacities for programs with a binding cutoff expost, conditional on the
fact that the program had a binding cutoff in the prior year as well. I assume that changes
to capacities happen exogenously from the student’s perspective and that students do
not base their application decisions on expectations for how program capacities might
change from the previous year.
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7 Estimation
In this section, I describe the estimation procedures used for the Portfolio Choice model
and applicant beliefs.

7.1 Portfolio Choice model
The estimation of the portfolio choice model is not straightforward. As I mentioned
in section 5, there are many possible portfolios and it is not feasible to solve for them
all. Finding an expression for the choice probabilities would require me to find the
expected value for all possible portfolios. As there is no convenient expression for the
choice probabilities, I cannot use Maximum Likelihood estimation. What I do instead
is to solve the model using MIA for some given applicant and program characteristics
along with simulated taste shocks. I can then use the Simulated Method of Moments
(SMM) for estimation. The SMM method implies simulating applications for a given
guess on parameters and comparing the chosen moments from the simulated data with
the same moments from the observed data and, in essence, minimizing the weighted
distance between these. The SMM objective function is given by

𝑄(𝜃) = (𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 (𝜃) − 𝑀𝑑𝑎𝑡𝑎) ′Ω−1 (𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 (𝜃) − 𝑀𝑑𝑎𝑡𝑎), (6)

where 𝑀𝑑𝑎𝑡𝑎 is a vector of moment conditions from the data and 𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 (·) is
the corresponding moments based on simulated data from the model for a given guess
on the parameters 𝜃. Ω is a weighting matrix. The initial estimation uses the identity
matrix as the weighting matrix. Although the estimator is consistent with large N and a
fixed number of simulations S, it will most likely be inefficient as it gives equal weight
to all moment conditions, even though I do not expect that all moments are equally
informative. The current choice of weighting matrix is a result of time constraints, as
the model is computationally costly to solve and simulate. Later implementations will
use a more efficient weighting matrix.
I select the moments to include based on the features I want the model to capture

in the data. I first discretize all the continuous distributions for program characteris-
tics (distance, standardized GPA, expected unemployment, expected earnings, and the
dispersion of expected earnings) based on the application data. By using some dis-
cretization points I can calculate the empirical and simulated share of applicants within
a given group for a given characteristic by, e.g., rank in their application, field, and uni-
versity. I interpret the calculated shares as probabilities, and the estimation procedure
then minimizes the distance between the empirical and simulated probabilities, where
I first take the average over the simulations for the simulated moments.
I estimate moments in 𝑀𝑑𝑎𝑡𝑎 which are based on the continuous measures with the

following function
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𝑀𝑘𝑟 =

∑𝑁𝑟

𝑖
1{𝑐𝑢𝑡𝑘−1<𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖𝑟 ≥𝑐𝑢𝑡𝑘 }

𝑁𝑟

where 𝑐𝑢𝑡𝑘 is the 𝑘th discretization point for a given variable, 𝑁𝑟 is the number
of applicants who have any program ranked as rank 𝑟 , 1 is in indicator function,
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖𝑟 is the value of a given program characteristic for the program ranked on
rank 𝑟 by individual 𝑖. Hence, 𝑀𝑘𝑟 is the share of applicants out of the 𝑁𝑟 , who have
ranked programs on rank 𝑟 with values of a given program characteristics within the
interval between 𝑐𝑢𝑡𝑘−1 to 𝑐𝑢𝑡𝑘 . Table 4 displays my chosen discretization points.

Table 4: Discretization points for
the moments

Measure Cutpoint (𝑐𝑢𝑡𝑘)
𝐷 0 < 5 < 15 < ∞
𝐺 −∞ < 0 < ∞
𝑈 0 < 6 < 12 < ∞
𝑤 0 < 2.5 < 3.5 < ∞
𝜎𝑤 0 < 1 < 1.5 < ∞

Note: The table reports the dis-
cretization points used to generate the
moments for the simulated method of
moments estimation.

In the estimation I use the discretized distributions of the measures directly and also
include the share of applicants with any program on a given rank, as well as the share
of applicants who rank a program in a given field or university and moments based on
discretized measures of the continuous variables, which I have interacted with field and
university dummies. I further only use the mentioned moments for ranks 1-3 and only
include moments that are non zero for the observed data. This gives me a total of 781
moments.
In practice I find the reported parameter estimates in two steps. First I hand

calibrate the parameters to values that seem close to a minimum for the criterion
function, thereafter I feed these calibrated parameters as initial values to the ’fminsearch’
minimizer in Matlab which uses the Nelder-Mead simplex algorithm to estimate the
parameters.
I have not estimated standard errors for the estimated parameters in the current

estimation framework. Estimating standard errors requires me to estimate the variance-
covariance matrix for the moments, which is currently too computationally costly to
implement for this paper version. I will estimate standard errors in a future version of
the paper.
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7.2 Beliefs
I do not have information on subjective beliefs, but I can estimate them. Agarwal and
Somaini (2018) show that under an assumption of rational expectations, it is possible to
estimate subjective beliefs consistently using their bootstrap estimator. Their proposed
method samples applicants and their applications with replacement from the population
of applicants and runs the assignment algorithm to get the cutoffs for each sample.
Repeating this many times in a bootstrap routine makes it possible to characterize the
distribution of cutoffs. To estimate the individual subjective belief for a program, I
calculate the fraction of times individual 𝑖’s GPA is equal to or above the simulated
cutoff for program 𝑗 . The method requires information on all applicants and their
applications and admission scores, as well as information on the mechanism used to
match applicants with programs and the capacities of the programs. The bootstrap
estimator is given by the following expression

𝑝𝑖 𝑗 =
1
𝐵

𝐵∑︁
𝑏=1

1{𝑠𝑖≥𝑃𝑗𝑏 } (7)

where 𝑝𝑖 𝑗 is the estimated beliefs, 1 is an indicator function that is equal to one
when the students score, 𝑠𝑖 , is greater than or equal to the simulated cutoff. 𝑃 𝑗𝑏 is the
simulated cutoff for program 𝑗 in bootstrap simulation 𝑏. I only estimate beliefs for the
analysis sample, although I need the full sample to simulate the cutoff distributions for
the programs. The estimation results in a 𝑁-by-𝐽 matrix which contains the estimated
beliefs, 𝑝𝑖 𝑗 , in each cell.
As mentioned in section 4 I draw from the pool of all applications to simulate the

different cutoffs, while I only use the analysis sample to estimate the beliefs. The reason
for doing this is that it is impossible to subset the capacities in a meaningful way, and
simulating the cutoffs on a sub-sample of the pool of applicants would result in many
simulations where many programs never reach their capacities.
Asmentioned in section 2, theDanish assignment procedure differs slightly from the

standard DA mechanism (mainly as it includes different quotas, standby applications,
and applicants cannot submit more than 8 programs). However, knowledge about the
allocation mechanism allows me to consider these to get consistent estimates of the
beliefs.
Firstly the option to apply for quota 1 standby is trivial to incorporate as it follows

the same GPA ranking as quota 1. It is thereby possible to allow for additional standby
seats, which only students applying on standby can fill, resulting in additional standby
cutoffs for each programwith this application channel. It is more difficult to incorporate
the quota 2 and quota 2 standby channels. This is because the assignment criteria are
unknown/nontransparent and program-specific. The different programs rank applicants
based on some point system, which partly relies on subjective evaluations and changes
from program to program. This is because the CAS needs a ranking of the applicants
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to allocate them. Unfortunately, I do not have access to data on these rankings.8 If
I choose not to include quota 2 applicants in my analysis, I can take advantage of the
fact that all quota 2 applications are first tested using quota 1 criteria. This implies that
𝑝𝑞1 ≤ 𝑝𝑞2 or the individual probability of acceptance for quota 2 applicants has a lower
bound, which is the individual probability of acceptance through the quota 1 channel.
Further, as I am only interested in estimating preferences for quota 1 applicants, I can
use the knowledge of whether quota 2 applicants were accepted for a given program
through the quota 2 channel as a measure of the quality of their quota 2 application.
What I do in practice is that I observe for which programs applicants are accepted on
quota 2. If an applicant reaches such a program in the mechanism and is rejected on
the quota 1 criteria, I accept the applicant in quota 2.
This approach to estimating beliefs is crucial for conducting my policy experiment,

as it requires explicit modeling of the belief formation of applicants, as this is the only
channel through which capacities can affect application behavior.

8 Results
In this section, I describe the results. I first describe the estimated utility parameters and
university and field fixed effects before I validate how well the model fits the observed
data.

8.1 Estimated preference parameters
Table 5 shows the estimated utility parameters for the Portfolio Choice model. Ap-
plicants prefer programs close to the high school they attended, where the accepted
applicants in the prior year had higher GPAs on average, with lower expected unem-
ployment, higher expected earnings, and a higher dispersion in expected earnings. The
estimated coefficient on distance is as expected negative, such that applicants prefer
closer programs, proxied by the location of their high school, to programs further away.
The negative sign on the coefficient on 𝐺 means that applicants prefer programs where
they have a lower GPA than the average accepted applicant in the previous year. This is
in line with a story of applicants not wanting to waste their GPAs and therefore apply
to programs with higher GPA requirements. However, the interpretation comes with a
limit as applicants are also more likely to rank programs where they have a higher belief
about being accepted, which requires a relatively high grade compared to the other
applicants in the current application year. As the parameter on𝑈 is negative, applicants
prefer programs with lower expected unemployment. Further, they also prefer programs
with higher expected earnings and programs with a higher dispersion of expected earn-
ings. Hence applicants prefer programs with better labor market prospects, e.g., low

8It would likely not help me much, even if I had access to the rankings, as my policy experiments would
require me to model the quota 2 evaluation process.
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Table 5: Estimated parame-
ters

Parameter Value

𝐷 -0.104
(.)

𝐺 -0.200
(.)

𝑈 -0.009
(.)

𝑤 0.127
(.)

𝜎𝑤 0.035
(.)

𝑄 0.634
Simulations 2
Applicants 12,964
Observations 24,025

Note: The table reports parame-
ter estimates and standard errors
in parentheses. The current so-
lution and estimation procedure
make the estimation of standard
errors too time consuming, so I
have not estimated them. The ta-
ble also contains the value of the
minimized criterion function, Q,
and the number of applicants and
observations used in the estima-
tion.

unemployment and high wages, with a higher chance of high wages.
Tables 6 and 7 show the estimated fixed effect parameters on field and university

fixed effects. The field fixed effects are all in relation to the field Social sciences, excl.
Economics and Political Science and the university fixed effects are in relation to the
University of Copenhagen. We see that conditional on the other variables of the utility
function, law, business, and medicine are the most preferred fields, followed by other
business and health. Looking at the university fixed effects, we see that conditional on
the other variables of the utility function, Roskilde university andAalborgUniversity are
slightly more preferred than the University of Copenhagen, while Copenhagen Business
School, the Technical University of Denmark, and the IT University of Copenhagen are
the least preferred.
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Table 6: Estimated field fixed
effect parameters

Parameter Value

Social science ref.
(.)

Humanities -0.132
(.)

Health 0.652
(.)

Natural science -0.126
(.)

Engineering -0.211
(.)

Other Business 0.618
(.)

Education -0.051
(.)

Economics 0.076
(.)

Medicine 3.539
(.)

Law 2.306
(.)

Political science -0.894
(.)

Business 0.955
(.)

Note: The table reports the es-
timated parameters for the field
dummies. The reference cate-
gory is Social science.

8.2 Validation of Portfolio Choice model
To validate the Portfolio Choice model, I make two comparisons. Firstly, I check how
some of the moments used in the estimation compare with the simulated, and secondly,
I check if the simulated data moments are close to hold-out moments. The first check is
less demanding than the second check as the estimation procedure explicitly minimizes
this difference. I have used the first three ranks of applications to fit the model. While
applicants can rank up to eight different programs in their applications and I therefore

26



Table 7: Estimated university fixed effect pa-
rameters

Parameter Value

University of Copenhagen ref.
(.)

Aarhus University -0.131
(.)

Copenhagen Business School -0.351
(.)

Aalborg University 0.203
(.)

University of Southern Denmark -0.060
(.)

Roskilde University 0.115
(.)

Technical University of Denmark -0.438
(.)

IT University of Copenhagen -0.964
(.)

Note: The table reports the estimated parameters
for the university dummies. The reference category
is University of Copenhagen.

have potential hold out moments for five ranks, the share of applicants who submit an
application of a given length is falling by the length, so I only use the moments for the
fourth rank as hold out moments.
Figure 4 shows the distribution of the length of application for the observed applica-

tions in the analysis sample and the simulated applications from the model. We see that
the model captures the overall characteristics of the distribution for length of application
quite well, although it over-predicts the share of applicants with short applications (only
one program) and under-predicts applicants with longer applications (more than one
program). The model seems to capture the share of applicants with four programs in
their application quite nicely as well.
Table 8 shows howwell themodel does in terms of capturing the shares of applicants

who rank a program in a given field (Panel A), shares of applicants who rank a program
in a given university (panel B), and the means of program characteristics over the four
top ranks. The moments based on the first three ranks are used to fit the model. If we
first focus on ranks one to three we see that the model overall captures the moments used
in the estimation fairly well. Looking at panel A we see that the difference between the
empirical and simulated shares for the different fields is in general below four percentage
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Figure 4: Empirical and simulated share of applicants by the number of programs in
their application

Note: The first axis displays the number of programs in an application (length of the application) and the
second axis displays the share of applicants in percentages. The color of the bars indicates the source, red
represents the empirical distribution and green indicates the simulated distribution.
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Table 8: Comparison of data and simulated moments
Panel A: Field Rank 1 Rank 2 Rank 3 Rank 4

Δ % Δ % Δ % Δ %
Social science 0.039 32.99% 0.024 39.67% 0.011 33.96% 0.000 -3.50%
Humanities 0.005 2.26% 0.005 4.76% -0.001 -3.03% -0.007 -31.64%
Health -0.012 -23.97% -0.008 -53.33% -0.003 -48.33% -0.001 -27.00%
Natural science 0.032 15.29% 0.022 22.17% 0.005 9.49% -0.008 -37.88%
Engineering -0.008 -13.61% -0.011 -62.67% -0.008 -89.45% -0.006 -215.79%
Other Business -0.023 -30.11% 0.006 13.19% 0.000 1.82% -0.004 -50.00%
Education -0.008 -100.00% -0.004 -138.57% -0.001 -81.82% -0.001 -90.91%
Economics 0.014 45.10% 0.003 29.00% 0.001 20.51% 0.000 6.41%
Medicine -0.072 -85.34% 0.017 44.54% 0.018 82.43% 0.010 96.38%
Law -0.010 -12.60% 0.008 21.86% 0.010 56.09% 0.007 76.23%
Political science 0.021 82.14% 0.012 86.22% 0.006 90.96% 0.002 79.03%
Business 0.021 34.36% 0.004 20.65% 0.001 11.23% -0.002 -52.50%

Panel B: University Rank 1 Rank 2 Rank 3 Rank 4

Δ % Δ % Δ % Δ %
KU 0.080 21.8% 0.039 25.7% 0.023 27.8% 0.000 -0.22%
AU -0.024 -12.3% 0.011 11.8% 0.010 20.4% -0.003 -16.89%
CBS 0.005 6.7% 0.019 39.0% 0.011 43.1% 0.001 9.50%
AAU -0.041 -33.2% -0.015 -33.5% -0.007 -38.5% 0.002 11.20%
SDU -0.053 -42.1% 0.003 5.1% -0.004 -12.7% -0.007 -52.73%
RUC 0.017 36.3% 0.011 44.0% 0.002 19.4% -0.001 -29.69%
DTU 0.010 20.5% 0.008 34.5% 0.003 24.3% 0.000 -8.77%
ITU 0.007 62.2% 0.002 47.2% 0.000 23.5% 0.000 27.27%

Panel C: Program char. Rank 1 Rank 2 Rank 3 Rank 4

Δ % Δ % Δ % Δ %
Distance -1.054 -14.7% 0.261 3.1% 0.658 7.3% 2.619 25.29%
G 0.003 -1.7% 0.702 -417.5% 1.164 -615.8% 1.265 -350.23%
U 0.332 7.3% -0.109 -2.4% -0.118 -2.6% -0.204 -4.38%
Mearn -0.070 -2.8% 0.041 1.6% 0.070 2.8% 0.080 3.24%
Stdearn 0.077 6.8% 0.094 8.0% 0.064 5.5% 0.015 1.36%

Note: The table reports differences between empirical and simulated moments (Δ) and the difference in percent of the empirical
moment (%) for ranks one to four in the applications. The moments based on the first three ranks are used to fit the model,
while the moments based on the fourth rank are hold out moments. Panel A shows how well the model captures the share of
applicants who have a program in a given field on ranks one to four. Panel B shows how well the model captures the share of
applicants with a program in a given university for ransk one to four. Panel C shows how well the model captures the mean
program characteristics for rank one to four.
The field Social science is excluding Economics and Political science and the field Health is excluding Medicine.
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points (100 · Δ) except for medicine on the top rank, where the model over predicts the
share of applicants with a program in Medicine as their top priority by around seven
percentage points. The get an understanding of the magnitude of the differences we
can look at the columns with the differences in terms of percentages of the empirical
share (%). We see that a Δ of 0.072 for Medicine on the top rank corresponds to
85.34% of the empirical share, meaning that the difference is almost as large as the
empirical share. If we next move to panel B, we see that the model also does a fairly
good job of capturing the shares of applicants with a program in a given university for
the first three ranks. The largest difference is that the model under predicts the share
of applicants with a program at University of Copenhagen (KU) as their top rank by
eight percentage points, although as the share of applicants who rank programs at the
University of Copenhagen in general is large, the difference only corresponds to 21.8%
of the empirical share. Lastly, if we look at panel C we see that the model seems to
capture all the program characteristics except G quite well.
To conclude the model fits estimation moments quite well. The more demanding

test is however how the model fits the hold out moments (rank four). For panel A and B
the model captures the shares for fields and universities as well and in some instances
better than the estimation moments. In panel C the model does almost as good for the
hold out moments as the moments used in the estimation, except for distance, where the
model under predicts the mean distance to the programs included on the fourth rank by
around 26 km (Δ · 10km), which corresponds to 25.29% of the empirical mean distance
on the fourth rank.

9 Policy experiments
Having described applicant preferences with my model, I now turn to the next point
of interest, simulating the effects of supply changes, through changes in capacities,
under two different scenarios. Under the first scenario, applicants cannot update their
beliefs, and under the second, they can update their beliefs. As the model only captures
the demand side of the education market, I can only look at the effects in a partial
equilibrium. Therefore, I will not be able to perform a full welfare analysis. I can,
however, look at how the different policies affect the distributions of applications,
outcomes, and the characteristics of offered programs.
The Portfolio Choice model allows me to perform policy experiments where I

change the supply for programs, as the supply only affects the subjective applicant
beliefs through the available capacities in the model. Program capacities are only
public after all offers are given and only for programs with exhausted capacities. This
means that applicants can only see a program’s capacity in the previous years (if the
capacity was exhausted) and cannot see the change in capacity from the previous year
to the current year. While this might give applicants some information on the available
capacities, at least for programs with binding cutoffs, it is limited how they can use it
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when forming their subjective beliefs, as they cannot take possible changes into account.
The section proceeds as follows. I first describe how the policy changes affect

applicants in my model and the channel through which applicants can update their
beliefs according to the policy changes. After that, I present and discuss the effects of
the proposed reduction in capacities for programs within the field of humanities.

9.1 Changes to capacities and belief updating
The proposed policy experiments aim to understand how changes to capacities affect
applicants’ demand for programs. Capacities entermymodel through theCASmatching
mechanism. The capacities enter the applicants’ expected utility from submitting a
given portfolio in the subjective program-specific beliefs and further, also affect which
program applicants are offered, if any. To evaluate the effect of the proposed policies,
I need to know and be able to implement the allocation mechanism. Further, I need
to include a channel through which applicants can update their beliefs according to
changes in capacities.
I run the policy experiments in the following procedure. I first simulate themodel for

different capacities under the current framework, where the changes are unanticipated
shocks to the capacities, and applicants cannot consider them when forming their
beliefs. Second, I look at the same changes to capacities where I instead reveal them
to applicants before they form their applications. This allows applicants to update their
subjective beliefs according to the new capacities. In my model, program capacities
only affect applicants’ expected utility from submitting a given application through their
subjective beliefs. The indirect utility derived from being admitted to a given program
is unaffected. I can therefore find the effect of the proposed policy experiment by only
varying capacities and whether I allow applicants to update their subjective beliefs or
not while holding the policy invariant utility parameters fixed.
Applicants update their beliefs according to the algorithm in appendix C. The

algorithm runs until the cutoff distributions for all programs converge, where each point
in the distributions is the equilibrium cutoff from taking a sample with replacements
from the full sample of applicants and running the allocation mechanism. In each
iteration, I reestimate beliefs and solve the portfolio choice model for the given indirect
utility parameters and the new estimated beliefs. When the euclidean norm over the
vectors of means and standard deviations of the cutoff distributions are below the
tolerance parameter (𝜖 = 1𝑒 − 6) I say the algorithm has converged.
Before I run the policy experiments, I need an additional step. The beliefs estimated

from the data are based on the observed applications. So to get a baseline for the
updating algorithm, which is aligned with the simulations from the model, I reestimate
beliefs using the simulated applications from the model. I then use the new beliefs
along with the preference parameters in the policy experiments. Figure 8 illustrates the
new predicted shares of applicants with an application containing one to four programs.
We see that it has changed very little compared to figure 4.
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The specific changes Imake to capacities are reductions to the capacities in programs
within the field of humanities. This is interesting as the vacancy-based dimensioning
reform mainly affects programs in the field of humanities.
As the current model does not include an outside option as a choice (I have con-

strained all applicants to submit at least one program in their applications), a reduction
in overall capacities leads to the easily predictive result where fewer applicants are
accepted. To avoid this scenario, I instead look at capacity-neutral changes. In other
words, when I reduce capacities for some programs, e.g., within humanities, I re-
distribute the removed capacities among all other programs to keep the same overall
capacities. There are many different ways to redistribute capacities, I choose to re-
distribute capacities according to the distribution of capacities on the program level
for unaffected programs, using the baseline capacities. This means that if a program
for example had 5% of total capacities excluding programs within humanities before
I change capacities, this program will receive 5% of the total capacities that I remove
from the programs within humanities.
Lastly, it is important to note, that as I rely on the full sample when I run the

allocation mechanism, and I only estimate preferences for applicants in the analysis
sample, the preferences for all other applicants in the full sample are fixed when I
run the allocation mechanism to look at where applicants are accepted in the policy
experiments. All the reported results for the policy experiments only contain the
applicants in the analysis sample, but their application behavior is also affected by
the applications of the other applicants, as the result from the allocation mechanism
is a general equilibrium outcome based on the preferences of applicants and programs
within the constraint of the capacities. In a future version of the paper I will look more
closely at how this affects my results.

9.2 Reducing capacities for humanities
Table 9 shows the field level capacities for different values of the policy parameter 𝛾.
The capacities are for all programs included in at least one application for the analysis
sample. The first column shows the baseline total program capacities by field, and
the subsequent columns show how the capacities change by fields for different policy
parameter values (𝛾). We see that the humanities programs’ capacity drops as the value
of 𝛾 falls while the program capacities in the other fields increase. This is a feature of
the neutral policy design, where reductions in the capacities of programs within one
field are redistributed across the programs in the other fields by the baseline program
capacities of unaffected programs. We see that the field with the highest number of
capacities in the baseline setting is humanities, with the field Natural science and the
fields within business and law (Business, Other Business, and Law) in a close second
and third place. The chosen redistribution rule means that I redistribute most of the cut
capacities within humanities to programs within the mentioned broad fields.
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Table 9: Capacities for the different policies

𝛾 = 1 𝛾 = 0.9 𝛾 = 0.5 𝛾 = 0.1

Capacities

Social science 2,694 2,776 3,099 3,431
Humanities 4,760 4,289 2,401 483
Health 962 992 1,106 1,223
Natural science 4,428 4,562 5,099 5,635
Engineering 1,014 1,047 1,167 1,290
Other Business 2,180 2,244 2,508 2,775
Education 241 249 276 307
Economics 563 579 647 716
Medicine 1,094 1,126 1,259 1,393
Law 1,292 1,330 1,487 1,644
Political science 296 305 340 376
Business 920 948 1,058 1,171

Total excl. Humanities 15,684 16,158 18,041 19,961
Total 20,444 20,447 20,442 20,444

Note: The policy variable 𝛾, which indicates what share of the capacities in
the programs within humanities are left, while I redistribute 1−𝛾 capacities
from the programs within humanities across the programs within the other
fields. The capacities in the first column, where 𝛾 = 1 are the baseline
observed capacities. Due to the rounding of changed capacities to integers
on the program level, the sum of capacities for all columns is not the same.
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9.3 Applications and program characteristics

Table 10: Policy changes to capacities: Applications

Baseline No updating Updating

𝛾 (Fraction of original capacity) 1 0.9 0.5 0.1 0.9 0.5 0.1

Panel A: Humanities

Length of application 1.98 0.00 0.00 0.00 0.08 0.23 0.07
Accepted 0.84 -0.01 -0.13 -0.49 0.01 -0.04 -0.08
Rank accepted on 1.11 0.03 0.20 0.52 0.01 0.09 0.15
Number of fields 1.54 0.00 0.00 0.00 0.07 0.27 0.23
Same top-ranked program 1.00 0.00 0.00 0.00 -0.08 -0.29 -0.67
Same top-ranked field 1.00 0.00 0.00 0.00 -0.06 -0.25 -0.65

Panel B: All other fields

Length of application 1.78 0.00 0.00 0.00 -0.02 -0.11 -0.20
Accepted 0.83 0.01 0.03 0.05 0.02 0.03 0.03
Rank accepted on 1.13 -0.01 -0.06 -0.09 -0.03 -0.05 -0.06
Number of fields 1.52 0.00 0.00 0.00 -0.02 -0.06 -0.11
Same top-ranked program 1.00 0.00 0.00 0.00 -0.06 -0.04 -0.06
Same top-ranked field 1.00 0.00 0.00 0.00 -0.05 -0.03 -0.05

Observations 12,964
Simulations 2

Note: Column 1 (𝛾 = 1) contains the baseline application characteristics and outcomes of the matching
mechanism. Panel A is for applicants with a program in Humanities as their top rank in the baseline setting,
and panel B is for applicants with other programs as their top rank in the baseline setting. The numbers of
columns 2 to 7 are all expressed as row-wise deviations from column 1.

Table 10 shows the overall counterfactual characteristics of applications split up into
two panels, panel A for applicants with a program within humanities as the top rank in
their application with the original capacities and panel B for all other applicants for the
different values of the policy variable 𝛾 and whether applicants can update their beliefs
according to a change in program capacities. If applicants cannot update their beliefs,
the submitted applications will stay the same, although the realized outcomes from
the matching mechanism can change as the capacities change. The first column with
𝑔𝑎𝑚𝑚𝑎 = 1 is the baseline setting, where the capacities equal the observed capacities.
I express all counterfactual results, columns 2-7, as deviations from the results in the
baseline setting. I have fixed the applicants for each panel in the table, so even though
some applicants, e.g., change their top-ranked program from a program in humanities
(with the original capacities) to a program in another field (with changed capacities),
they are part of the results in panel A, and likewise for panel B.
I first compare the applications and the outcome of submitted applications for

applicantswith a program in humanities as their top priority (panelA) to other applicants
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(panel B) under the baseline setting (𝛾 = 1). Overall, applicants with humanities
programs as their top priority submit longer applications. At the same time, they are as
likely to be accepted to a program and, conditional on being accepted, they are accepted
on the same rank in their application as the other applicants. The last two categories
are not interesting in the baseline setting, as they measure if the applicant has the same
top-ranked program or field as in the baseline setting.
Next, I look at columns two to four, which show the deviation from the baseline

setting for different policy parameter values under the no updating setting. We see
that the length of applications and the shares of applicants with the same top-ranked
program or field are the same as in column one. This is because applicants can only
change their applications through changes in beliefs, and in the no updating setting, I
do not allow applicants to update their beliefs. As expected, for columns 2-4 in panel
A, we see that the share of applicants, who are accepted to any program, falls as I
reduce the capacities for the programs in humanities, although the share of accepted
applicants does not fall one to one with the reduction in capacities. We also see that
the applicants are on average accepted at a lower ranked program in their applications.
In columns 2-4 in panel B of table 10, we see the opposite pattern, although to a much
lesser extent. This stems from the fact that the change in capacities is neutral in total
capacities. Hence, programs in fields other than humanities get increasingly higher
capacities as capacities within humanities are reduced, as we see in table 9.
Next, I turn to the setting where applicants can update their beliefs to take the

changes to capacities into account, columns five to eight in table 10. By comparing
panels A and B, we see that applicants with humanities as their top rank in the baseline
setting increase the length of their applications, while the applicants with other fields as
their top rank in the baseline setting decrease the length. Further, we see that applicants
in panel A have a larger probability of being accepted for a small change in capacities
(𝛾 = 0.9), while they have a slightly lower probability of being accepted for larger
changes to capacities (𝛾 < 0.9). On the other hand, applicants in panel B have a slightly
higher chance of being accepted, which increases with the change in capacities. For the
measure of which rank the applicants are accepted on, we see that applicants in panel A
are accepted to a lower ranked program in their applications, while applicants in panel
B are accepted to a higher rank in their applications. Last, we see that applicants in
panel A increase the number of fields in their applications and are less likely to rank
the same program or field as their top rank when capacities in humanities decrease. For
applicants in panel B we see that they include fewer fields in their applications as we
change the capacities, while they are slightly less likely to report the same program or
field as their top rank.
To sum up, the results from table 10 show that when I allow applicants to update

their beliefs, applicants in panel A can change their applications such that their chance
of being accepted is not affected nearly as much, e.g., 76% compared to 35% in the most
extreme case with 𝛾 = 0.1 (columns 4 and 7). We also see that the applicants in panel
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A diversify their applications by including programs in more fields and changing their
top ranked program to another field. For applicants in panel B, we see that they become
more confident of being accepted to highly ranked programs in their applications, so
they reduce the length of their applications. Further, we also see that a few of them
change the top-ranked programs and fields in their applications, likely as they have
more favorable beliefs about being accepted to other programs.

Table 11: Policy changes to capacities: Characteristics of accepted programs

Baseline No updating Updating

𝛾 (Fraction of original capacity) 1 0.9 0.5 0.1 0.9 0.5 0.1

Panel A: Humanities

𝐷 8.30 -0.05 -0.08 -0.22 -0.07 -0.09 -0.12
𝐺 0.51 0.04 0.17 -0.20 0.01 0.00 -0.40
𝑈 7.24 -0.13 -0.85 -2.25 -0.21 -1.14 -3.01
𝑤 1.88 0.02 0.16 0.44 0.04 0.22 0.60
𝜎𝑤 1.04 0.00 0.02 0.07 0.01 0.03 0.09

Panel B: All other fields

𝐷 7.89 0.01 0.01 0.00 -0.01 0.02 0.01
𝐺 0.44 -0.03 -0.13 -0.24 -0.04 -0.14 -0.21
𝑈 3.67 -0.03 -0.12 -0.18 0.00 -0.12 -0.17
𝑤 2.65 0.01 0.03 0.04 0.00 0.03 0.04
𝜎𝑤 1.12 0.00 0.00 0.00 0.00 0.00 0.00

Observations 12,964
Simulations 2

Note: Column 1 (𝛾 = 1) contains the baseline application characteristics and outcomes of the matching
mechanism. Panel A is for applicants with a program in Humanities as their top rank in the baseline setting,
and panel B is for applicants with other programs as their top rank in the baseline setting. The numbers of
columns 2 to 7 are all expressed as row-wise deviations from column 1.

Table 11 shows the overall counterfactual characteristics of the programs where
applicants are accepted. The table layout is the same as in table 10. The table
contains two panels, A and B, and the applicants in panels A and B are the same
across the columns. Further, columns 2-4 show the program characteristics compared
to the baseline for the setting with no updating, and columns 5-7 show the program
characteristics compared to the baseline for the setting with updating. I first compare
the baseline characteristics of programs applicants are accepted to for the two panels,
column 1 in table 11. We see that if we compare panels A and B in the baseline setting,
applicants with a program in humanities as their top rank (panel A) are accepted into
programs that are further away, have peers with lower relative GPAs’, can expect around
four months of additional unemployment, and almost 10, 000 DKK lower monthly
starting wages on average. Further, applicants in panel A also have a slightly lower
dispersion in expected starting wages.
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In columns 2-4 of table 11, the setting with no updating, we see that, as we decrease
capacities for programs in humanities, applicants in panel A are accepted to programs
further away, with lower expected unemployment and higher expected monthly starting
wages. This is somewhat counter intuitive, but the explanation is that the programs
in humanities are also the programs with the highest expected unemployment and the
lowest expected starting wages on average. So when we reduce capacities for programs
in humanities, many of the applicants in panel A are accepted into programs in other
fields. We do not see the same pattern for applicants in panel B, where the characteristics
of accepted programs do not change much.
When I instead look at columns 5-7 in table 11, which are for the setting where

applicants can update their beliefs, I see a similar pattern as in columns 2-4. However,
the magnitude of the changes in characteristics is larger for applicants in panel A. In
columns 2-4, where applicants cannot update their beliefs, the difference in program
characteristics is bounded by the applications in the baseline setting. This is not the
case when I allow them to update their beliefs.
So from tables 10 and 11, I see that when I reduce capacities for programs in human-

ities while increasing the capacities of other programs correspondingly, applicants who
had a program in humanities as their top rank before the change overall see the biggest
change. If I do not allow them to update their beliefs in response to the changes, they are
less likely to be accepted to a program. However, if they are accepted to a program, the
program is closer and has lower expected unemployment and higher expected starting
wages. When I, on the other hand, allow them to update their beliefs. In that case, this
attenuates the drop in the probability of being accepted, as the applicants can include
other programs in their applications, where they are more likely to be accepted. A result
of the change in application patterns is that the programs where the applicants in panels
A and B in table 11 are accepted are much more similar.

9.4 Application patterns
Figure 5 shows the distribution of top ranked programs by field before (second axis)
and after the policy change (first axis) for a 10% reduction in capacities for programs
in humanities (𝛾 = 0.9). The figure illustrates how changes to the capacities affect
the application behavior when applicants are allowed to update their beliefs. The case
where applicants cannot update their beliefs is trivial, and I do not report it, as applicants
do not change their behavior in this case. I first look at applicants with a program in
humanities as their top rank (the second to last row) before the change. We see that after
the reduction in capacities for the programs in humanities, 93.9% of them still include
a program in humanities as their top rank. Interestingly, most applicants either move
to natural sciences, social science, or engineering programs. A possible explanation
for this pattern is that the applicants who move away from programs in humanities are
most likely at the lower end of the ability distribution. As programs in natural sciences
typically face low demand and hence have low GPA cutoffs or free slots even applicants
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Figure 5: Distribution of top-ranked program by field before and after policy change,
𝛾 = 0.9 and applicants update beliefs

Note: The second axis indicates top ranked field before the change, and the first axis indicates top ranked
field after the change. The cells are color coded by the share of applications with a given before/after field
combination by field. In other words, the percentages on each row sum to 100%. The policy parameter
𝛾 gives the fraction of capacities in Humanities which are left, and conversely, 1 − 𝛾 gives the fraction of
capacities in Humanities, which are redistributed across the other fields.
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with low ability have relatively high beliefs about being accepted in them. Further, as
they also lead to expected wages in the top end and a low expected unemployment these
programs are attractive to these applicants. If we turn to the other rows of figure 5,
we see that it is not just applicants who had a program within humanities as their top
rank who changed their top ranks. Some of the applicants with programs in other fields
also change their top ranks, even though these programs all have increased capacities.
This might seem puzzling at first, but as the offers arise in the equilibrium, where the
algorithm matches applicants and programs according to their preferences, changes
to capacities will affect the application behavior in my model for applicants who are
not directly affected by, e.g., a reduction. Further, the figure only reports the top
ranked program, and the affected applicants might just have ranked their previous top
ranked program lower in their application. Appendix figure 9 where I have reduced
the capacities for programs in humanities by 50% (𝛾 = 0.5) shows a similar pattern to
figure 5. However, the share of applicants who had a program in humanities as their
top rank before the change is even lower, and the share of applicants with programs in
other fields as top rank before the change changes less than in figure 5. I can explain
the last part by the fact that all other programs now have even more capacities.

9.5 Accepted programs
Next, I look atwhere applicants are accepted. I first look atwhere applicants are accepted
when they cannot update their beliefs, figure 6, before I look at where applicants are
accepted, when they can update their beliefs, figure 7. Figure 6 shows the distribution
of programs where applicants are accepted by field, before (second axis) and after the
policy change (first axis) for a 10% reduction in capacities for programs in humanities
(𝛾 = 0.9) where applicants cannot update their beliefs. Compared to figure 5, figure
6 has an additional row and column for applicants who are rejected from all programs
in their applications. Further, when the applicants cannot update their beliefs, the
applications are fixed while the capacities change. Most of the rows in figure 6 are
not so interesting as nearly all applicants accepted in a program in a given field before
the change are also accepted in the same field after the change. The only two rows
where something happens are the third last row (humanities before change) and the last
row (applicants rejected before change). We see that 6.5% of applicants accepted to a
program in humanities before the change are rejected, and close to 0% are accepted in
programs in other fields. In the last row, we see that the share of applicants who were
rejected before the change is reduced by 11.4%.
Figure 7 shows the distribution of programs where applicants are accepted by field,

before (second axis) and after the policy change (first axis) for a 10% reduction in
capacities for programs in humanities (𝛾 = 0.9) and applicants can update their beliefs.
As figure 6, figure 7 also has an additional row and column for applicants who are
rejected from all programs in their applications. Allowing applicants to update their
beliefs according to the change in capacities creates a larger shift in which program
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Figure 6: Distribution of accepted program by field before and after policy change,
𝛾 = 0.9 and applicants cannot update beliefs

Note: The second axis indicates top ranked field before the change and the first axis indicates top ranked
field after the change. The cells are color coded by the share of applications with a given before/after field
combination within a before change field, in other words, the percentages on each row sum to 100%. The
policy parameter 𝛾 gives the fraction of capacities in Humanities which are left, and conversely 1 − 𝛾 gives
the fraction of capacities in Humanities, which have been redistributed across the other fields.
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Figure 7: Distribution of accepted program by field before and after policy change,
𝛾 = 0.9 and applicants can update beliefs

Note: The second axis indicates top ranked field before the change, and the first axis indicates top ranked
field after the change. The cells are color coded by the share of applications with a given before/after field
combination within a before change field. In other words, the percentages on each row sum to 100%. The
policy parameter 𝛾 gives the fraction of capacities in Humanities which are left, and conversely, 1 − 𝛾 gives
the fraction of capacities in Humanities, which have been redistributed across the other fields.
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applicants are accepted, although as we see in figure 7, it is again only applicants who
were accepted to a program in humanities or rejected from all programs before the
change who are accepted to other programs or rejected. In the third to last row, we
see that applicants who were accepted to a program in humanities before the change
are now slightly more likely rejected than in figure 6. Further, we see that previously
rejected applicants in the last row are now more likely to be accepted compared to
figure 6. The model prediction that more applicants who previously were accepted to
a program in humanities are rejected from all programs in the updating setting (figure
7) than in the no updating setting (figure 6) when I change the capacities is unexpected
in the sense that I would expect them to include other programs with a better chance
of being accepted (increased capacities). The likely mechanism behind this is that
applicants with low GPAs are most likely to change their applications. Since programs
in humanities have many applicants with low GPAs, these applicants will also be at the
bottom of the distribution within other fields and, therefore, more likely rejected, even
though the capacities of other programs have increase. In appendix figure 11 I reduce
the capacities by 50% (𝛾 = 0.5) instead of 90% in figure 7. I see the same pattern
in figure 11; it is mostly applicants who were accepted to programs in humanities or
rejected from all programs which are affected by the change in capacities. The effect is
larger than in figure 7 and not one-to-one with the change in capacities.
To sum up, the reduction to capacities in humanities, and conversely an increase

in all other programs’ capacities, causes applicants in all groups to change their top
ranked fields for small changes in capacities. However, for larger changes in capacities,
it is mainly applicants who had a program in humanities as their top rank before the
change who are affected, although the change is less than one-to-one with the change
in capacities. For small changes, I explain this by excess capacities in programs in
humanities. For large changes in capacities, I interpret it as applicants in humanities
having strong preferences. Further, we also see that mainly applicants who were
accepted to a program in humanities or rejected from all programs before the change
are accepted to programs in other fields or rejected after the change. This holds for
the setting where applicants cannot update their beliefs and the setting where they can
update their beliefs.

10 Conclusion
In this paper, I have studied the effect of changes to supply, through changes to capacities,
for higher education programs on the demand. I have in particular studied a "neutral"
reduction in capacities for programs in humanities, and found that applicants in general
respond to the change, when they can update their beliefs accordingly. Further, I
found that the response is not one-to-one with the changes to capacities, especially for
applicants who applied to programs in humanities before the change, as they have strong
preferences for these programs. Lastly I found that making capacities and changes to
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capacities public before applicants submit their applications can help applicants who
otherwise would be rejected from all programs in their applications.
A straightforward extension to the current model is to extend it to the full universe

of applicants. I plan to do this at a later stage and it requires information on the
characteristics of the universe of applicants and programs.
Another more challenging extension would be to include the extensive margin of

applications to the model as an outside option. This requires including a first step in
the model, where applicants choose between the option to apply or not. This allows the
study of how the extensive margin of applicants is affected by changes to capacities.
Finally, a very challenging extension to the current model is incorporating the

education market’s supply side into the model. This requires modeling of the decisions
by universities on how to spend their funds. This allows one to look at the full
equilibrium effects of changes to capacities and the effect of making universities declare
their available capacities publicly before applicants submit their final applications. Such
a model would make it possible to understand how not just applicant demand but also
universities would respond, e.g., by looking at the trade-off between quality and quantity
in teaching and the decision of time allocation of faculty for teaching and research.
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A Linking program identifiers in the application data
to DST registers

There is no direct link between the program identifiers in the application data and the
program identifiers in the register data, which are a combination of education codes
(UDD) and institution codes (INTSNR). I, therefore, have to create one. Before I
describe how I generate the link, it is useful to describe a few difficulties I must address
to ensure the link is reliable. There are mainly two issues that prevent me from just
making a simple merge of applicants from the application data to the register data by
personal identification numbers to see which education and institution codes they have
in the register data, when they have gotten an offer in the application data. Firstly,
some program identifiers in the application data cover multiple program identifiers in
the register data and the other way around. Secondly, I can only observe offers in the
application data, not which program the applicant enrolls in and the other way around in
the register data. To solve the problem, I partly rely on a simple algorithm that, for each
program identifier in the application data, finds the share of applicants with an offer
who have enrolled in a program in the register data in the current application cycle. I
then say a program combination is linked when a sufficiently high share with an offer
for a program in the application data is enrolled in a program in the education registry.
I further also condition on programs with a sufficiently high number of applicants with
an offer.
In practice, I rely solely on the algorithm for programs with a share 𝑥 ≥ 95% and

at least 100 applicants with an offer in the application data. For the remainder of the
programs, I define the links by hand, using the share and number of students to guide
me.
There is one further difficulty, the education register only contains students who

are enrolled in a program by the 1st of October. Therefore it does not contain early
dropouts. This should not be a big problem, but it is conceivable that the tendency to
drop out early varies across programs, and further, the problem increases in magnitude
as the uptake of a program gets smaller. There is, unfortunately, not much I can do
to solve this problem, although I try to mitigate it by the heuristic that programs with
smaller uptakes should have a higher share enrolled in a given education identifier.
Using this combined approach, I can identify combinations of education and in-

stitution codes from the registry data for 582 out of 897 program identifiers in the
application data.
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B List of example programs within fields
Table 12 contains lists of examples of education programs within the fields I have
defined.
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Table 12: Examples of programs in the defined fields

Field Example programs

Social science Sociology (KU), Anthropology (AU), Psychology (SDU), Psychology (AAU)
Humanities English (AU), Danish (SDU), Danish (KU), History (AAU)
Health Dentistry (KU), Sports Science (KU), Dentistry (AU), Musical Therapy (AAU)
Natural science Math (AU), Biology (KU), Computer Science (SDU), Physics (KU)
Engineering Civ. Eng. Energy (AAU), Civ. Eng. Elektronics (DTU), Civ. Eng. Nanotechnology (AAU)
Other Business Business Law (CBS), International Business (CBS), Marketing and Management Com. (AU), Business Law (AAU)
Education Pedagogy (KU), Speach Therapy (SDU), Audiology (SDU)
Economics Economics (KU), Economics (SDU), Economics (AU), and Economics (AAU)
Medicine Medicine (KU), Medicine (SDU), Medicine (AU), and Medicine (AAU)
Law Law (KU), Law (AU), Law (AAU), Law (SDU)
Political science Political science (KU), Political science (SDU), and Political science (AU)
Business Business Economics (CBS), Business Economics (SDU), Business Economics (AU)
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C Belief updating
The following algorithm updates applicants’ beliefs. The algorithm is based on algo-
rithm 2 in Larroucau and Rios (2022). Larroucau and Rios (2022) use it to update
beliefs as students update the information they have about their abilities in under the
different policies they evaluate. I have slightly adapted the algorithm to update beliefs
given new program capacities.

Algorithm 1 Updating beliefs
Input: 𝜃, 𝑝0, 𝑅𝑂𝐿𝐹𝑢𝑙𝑙 , 𝐶𝑜𝑙𝑑 , 𝐶𝑛𝑒𝑤 , 𝑠𝑐𝑜𝑟𝑒, 𝜖𝑡𝑜𝑙
Output: 𝑝, 𝑃

for each s in S do
Solve Portfolio Choice problem to get 𝑅𝑂𝐿𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 given (𝜃, 𝑝0

𝑠)
Substitute applicants in 𝑅𝑂𝐿𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 into 𝑅𝑂𝐿𝐹𝑢𝑙𝑙

Bootstrap cutoff distribution to get 𝑃0 given (𝑅𝑂𝐿𝐹𝑢𝑙𝑙 ,𝑠𝑐𝑜𝑟𝑒,𝐶𝑜𝑙𝑑)
Estimate 𝛿0 ≡ ( �̂�0, �̂�0)

end for
Stack 𝛿0 over simulations 𝑆
𝛿𝑑𝑖 𝑓 𝑓 = 2𝜖𝑡𝑜𝑙 , 𝑘 = 1, 𝜌 = 0.9
while 𝛿𝑑𝑖 𝑓 𝑓 > 𝜖𝑡𝑜𝑙 do

for each s in S do
Solve Portfolio Choice problem to get 𝑅𝑂𝐿𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 given (𝜃, 𝑝𝑘−1

𝑠 )
Bootstrap cutoff distribution to get �̃�𝑘

𝑠 given (𝑅𝑂𝐿𝐹𝑢𝑙𝑙 ,𝑠𝑐𝑜𝑟𝑒,𝐶𝑛𝑒𝑤)
Estimate updated beliefs 𝑝𝑘𝑠
Take point-wise convex combination of cutoffs �̂�𝑘

𝑠 = 𝜌𝑘 �̂�𝑘−1
𝑠 + (1 − 𝜌𝑘)�̃�𝑘

𝑠

Estimate 𝛿𝑘𝑠 ≡ ( �̂�𝑘
𝑠 , �̂�

𝑘
𝑠 )

end for
Stack 𝛿𝑘 over simulations 𝑆

Compute 𝛿𝑑𝑖 𝑓 𝑓 = ∥𝛿𝑘 − 𝛿𝑘−1∥, 𝑝 = 𝑝𝑘−1, 𝑘 + +
end while

𝜃 are the estimated preference parameters, 𝑅𝑂𝐿𝐹𝑢𝑙𝑙 is the submitted preference
ordering for the full sample, 𝑅𝑂𝐿𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 is the preference ordering for the analysis
sample, 𝐶𝑜𝑙𝑑 is the old program capacities, 𝐶𝑛𝑒𝑤 is the new program capacities, 𝑠𝑐𝑜𝑟𝑒
is a vector holding applicant scores, 𝑆 is the number of simulations, 𝜇 is the mean of the
cutoff distribution, 𝜎 is the standard deviation of the cutoff distribution, 𝑝 is a matrix
containing applicants estimated beliefs, and 𝑃 is a matrix containing the simulated
cutoff distribution for all programs.
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D Additional tables and figures

Table 13: Characteristics of programs in applications by rank

Rank 4 Rank 5 Rank 6 Rank 7 Rank 8
Mean/Std Mean/Std Mean/Std Mean/Std Mean/Std

Distance (10 Km) 10.36 9.33 10.16 8.81 10.75
9.48 8.90 9.07 8.33 8.26

Standardized GPA -0.36 -0.41 -0.51 -0.38 -0.27
1.75 1.89 2.02 2.08 1.86

Unemployment (Months) 4.66 4.94 5.13 5.33 5.49
2.81 2.77 2.81 2.55 3.42

Expected earnings (10,000 DKK) 2.48 2.47 2.45 2.43 2.36
0.59 0.56 0.56 0.57 0.55

Dispersion of Expected earnings (10,000 DKK) 1.11 1.17 1.18 1.27 1.05
0.44 0.47 0.49 0.63 0.18

Observations 1,269 494 222 102 53

Note: The reported numbers are means (standard deviations in parentheses). The first column reports variable names and units
in parentheses. The columns indicate for which rank in the applications the measures are. The number of observations shows
the number of applicants with at least the given number of ranks in their application.
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Figure 8: Empirical and simulated share of applicants by the number of programs in
their application using beliefs from additional step

Note: The first axis displays the number of programs in an application (length of the application) and the
second axis displays the share of applicants in percentages. The color of the bars indicates the source, red
represents the empirical distribution and green indicates the simulated distribution.
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Figure 9: Distribution of top ranked program by field before and after policy change,
𝛾 = 0.5 and applicants update beliefs

Note: The figure shows the distribution of top ranked programs by the field before and after the policy change.
The second axis indicates top ranked field before the change and the first axis indicates top ranked field after
the change. The cells are color coded by the share of applications with a given before/after field combination
within a before change field, in other words, the percentages on each row sum to 100%. The policy parameter
𝛾 gives the fraction of capacities in Humanities which are left, and conversely 1 − 𝛾 gives the fraction of
capacities in Humanities, which have been redistributed across the other fields.
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Figure 10: Distribution of top ranked program by field before and after policy change,
𝛾 = 0.5 and applicants cannot update beliefs

Note: The figure shows the distribution of top ranked programs by the field before and after the policy change.
The second axis indicates top ranked field before the change and the first axis indicates top ranked field after
the change. The cells are color coded by the share of applications with a given before/after field combination
within a before change field, in other words, the percentages on each row sum to 100%. The policy parameter
𝛾 gives the fraction of capacities in Humanities which are left, and conversely 1 − 𝛾 gives the fraction of
capacities in Humanities, which have been redistributed across the other fields.
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Figure 11: Distribution of top ranked program by field before and after policy change,
𝛾 = 0.5 and applicants update beliefs

Note: The figure shows the distribution of top ranked programs by the field before and after the policy change.
The second axis indicates top ranked field before the change and the first axis indicates top ranked field after
the change. The cells are color coded by the share of applications with a given before/after field combination
within a before change field, in other words, the percentages on each row sum to 100%. The policy parameter
𝛾 gives the fraction of capacities in Humanities which are left, and conversely 1 − 𝛾 gives the fraction of
capacities in Humanities, which have been redistributed across the other fields.
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